

Subsurface Utility Engineering: Updating Scopes of Work for the 21st Century

Presented by: Bob Clemens,VP Cardno TBF

Kentucky Transportation Cabinet Partnering Conference Presentation August 11th, 2009

Designating

The process of using surface geophysical methods to interpret the presence of a subsurface utility and to mark its approximate horizontal position (its *designation*) on the ground surface. (Note: Utility owners and contractors often call this process "locating.")

Locating

The process of exposing and recording the precise vertical and horizontal location of a utility, through the use of vacuum excavation. It is non-destructive and typically more time and cost efficient than other conventional digging methods.

A Professional Service

QL D – Records Research

QL C – Surveyed Surface Features

QL B - Designating

QLA - Locating

Utility Coordination
Utility Relocation Design
Construction Observation

Late 90's - Early 2000's

American Society of Civil Engineers (ASCE)

Subsurface Utility Engineering:

A branch of engineering practice that involves managing certain risks associated with: utility mapping at appropriate quality levels, utility coordination, utility relocation design and coordination, utility condition assessment, communication of utility data to concerned parties, utility relocation cost estimates, implementation of utility accommodation policies and utility design.

CI/ASCE 38-02

ASCE STANDARD

American Society of Civil Engineers

Standard Guideline for the Collection and Depiction of Existing Subsurface Utility Data

This document uses both Système International (SI) units and customary units

ASCE

CI/ASCE 38-02

Four
"Quality Levels"
defined

Quality Levels

Shaping the Future

ASCE Standard Quality Level D

- Research of records such as:
 - As-Built Records
 - Utility System Drawings
 - Oral Recollections

ASCE Quality Level D

Records Research:

Information comes solely from existing utility records, individual recollections and design tickets

ASCE Quality Level C

Field Research:

• Involves surveying visible aboveground utility facilities, i.e. manholes, valve boxes, etc.

Correlates survey data with existing utility records plans reconciled

ASCE Quality Level B

Designating: Using surface geophysical techniques to determine the existence and approximate horizontal position of underground utilities

Subsurface Utility Engineering vs. "One Call / Call Before You Dig"

Actual location of utility found with designation (surveyed)

Utility location according to One-Call System

Subsurface Utility Engineering vs. "One Call / Call Before You Dig"

ONE-CALL MARK
INDICATING GAS LINE

ASCE QUALITY LEVEL B MARK INDICATING GAS LINE

ASCE Quality Level A

Locating: Verification of precise horizontal and vertical location of subsurface utilities by non-destructive exposure; typically vacuum excavation.

A Professional Service

QL D – Records Research

QL C – Surveyed Surface Features

QL B - Designating

QLA - Locating

Utility Coordination
Utility Relocation Design
Construction Observation

Late 90's - Early 2000's

A Professional Service

Collection & Depiction

QL D - Records Research

QL C – Surveyed Features

QL B - Designating

QL A - Locating

Utility Coordination
Utility Relocation Design
Construction Observation

Late 90's – Early 2000's

A Professional Service

Collection & Depiction

QL D - Records Research

QL C – Surveyed Features

QL B - Designating

QL A - Locating

Utility Coordination
Utility Relocation Design
Construction Observation

Gravity Systems (Rims & Inverts, CCTV, Sondes, Designating & Locating)

Overhead (Poles, Lines, Pole Counts, Inventories)

Manhole Detailing

Profiles Development

2000's

Shaping the Future

A Professional Service

Collection & Depiction

QL D - Records Research

QL C – Surveyed Features

QL B – Designating

QL A - Locating

Utility Coordination

- Conflict Analysis
- Conflict Resolution

Utility Relocation Design Construction Observation

Gravity Systems (Rims & Inverts, CCTV, Sondes, Designating & Locating)

Overhead (Poles, Lines, Pole Counts, Inventories)

Manhole Detailing

Profiles Development

"Non-QL Mapping"
GIS Database Population
Corridor Planning
Authoring Utility Policies
3D Imaging

Today

Briefly...

"Non-QL Mapping" Field Sketches

GIS Database Population

Corridor Planning

Authoring Utility Policies

Conflict Analysis & Conflict Resolution

- Conflict Matrix
- Design solutions

- Utilizes 38-02 data
- Identifies all potential conflicts
- Recommends where to use QL-A

Shaping the Future

Conflict Number	Station and Offset (BL)	Utility	Identified Conflict	Test hole Needed	Test Hole Number	Utility Impact with Cost ("As- designed")	Recommended Resolution	*Benefit of Resolution

Station and Offset	Utility	Identified Conflict	Testhole Needed	Utility Impact with Cost ("As-designed")	Recommended Resolution	*Benefit of Resolution
100+05, 21'L 14th St Constr. BL	AGL-BFO	Proposed storm structure and existing BFO	No	Relocate 1150LF of BFO-DUCT (\$91,000)	Relocate proposed storm drainage into street. Use DI's that drain toward roadway.	Save Cost to Relocate BFO-DUCT (\$91,000)
100+66, 21'L 2 14th St Constr. BL	AGL-BFO	Proposed storm structure and existing BFO	No	See C1		
100+38, 24'R 3 14th St Constr. BL	UNK@Tee	Proposed 18" storm and unknown utility tee	TH 1	Relocate unknown type and function utility	TH to identify utility and conflict	Eliminate possible delay during construction
100+56, 25'R 1 14th St Constr. BL	8"W	Proposed 18" storm and existing 8"W	TH 2	Relocate 8'W (\$7,500)	TH on 8"W, adjust depth of proposed storm drainage	Save Cost to Relocate 8"W (\$6,000)
100+61, 25R 14th St Constr. BL	8"W	Proposed 18" storm and existing 8"W	TH 3	Relocate 8"W (\$7,500)	TH on 8"W, adjust depth of proposed storm drainage	Save Cost to Relocate 8"W (\$6,000
100+82, 28R 14th St Constr. BL	4"G	Proposed storm structure and existing 4"G	TH 4	Relocate 20 LF of 4"G (\$6,000)	TH on 4"G, adjust depth of proposed storm structure	Save Cost to Relocate 4"G (\$4,500
101+22 27'R 14th St Constr. BL	4"G	Proposed 18" storm and existing 4"x2" gas tee	TH 5	Relocate 2"G & 4"G Tee (\$12,500)	TH on G lines, adjust depth of proposed storm structure	Save Cost to Relocate G lines (\$11,000)
101+01 28'L 14th St Constr. BL	16"G	Proposed 18" storm and existing 16"G	TH 6	Relocate 16"G (\$10,000)	TH on 16"G, adjust depth of proposed storm structure	Save Cost to Relocate 16"G (\$8,500
101+25 41'L 14th St Constr. BL	BT-DUCT 2"G	Proposed storm structure and two BT- ducts	TH 7	Relocate BT-DUCT & 2"G (\$11,000)	TH on BT-DUCT & 2"G, adjust depth of proposed storm structure	Save Cost to Relocate BT-DUCT & 2"G (\$10,500)
101+37, 41'L 14th St Constr. BL	6"W	Proposed 18" storm and existing 6"W	TH 8	Relocate 6"W (\$5,000)	TH on 6"W, adjust depth of proposed storm drainage	Save Cost to Relocate 6"W (\$3,500
101+57, 27'L 1 14th St Constr. BL	16"G	Proposed 18" storm and existing 16"G	TH 9	Relocate 16"G (\$10,000)	TH on 16"G, adjust depth of proposed storm structure	Save Cost to Relocate 16"G (\$8,500
101+58, 22'L 2 14th St Constr. BL	AGL-BFO	Proposed storm structure and existing BFO	No	See C1		
101+90, 22'L 3 14th St Constr. BL	AGL-BFO	Proposed storm structure and existing BFO	No	See C1		
102+20, 27'R 4 14th St Constr. BL	4"G	Proposed storm structure and existing 4"G	No	Relocate 4"G (\$4,500)	Relocate 4"G	Elimnate conflict with proposed DI
102+36, 24'L 5 14th St Constr. BL	AGL-BFO	Proposed storm structure and existing BFO	No	See C1		

*Please include all benefits incurred including time, costs, and safety improvements.

K	01/	
۲,	Сy	•

AC - Asbestos Concrete

BE - Buried Electric

BFO - Buried Fiber Optic BT - Buried Telephone

G - Gas

L- Left

MES - Mitered End Section OE - Overhead Electric

OT - Overhead Telephone R - Right

RCP - Reinforce Concrete Pipe

W- Water

WM - Water Main

TH - Test Hole, verify vert. and horiz

UNK - Unknown Type

SAN - Sanitary Sewer

Utility Owner:

AGL Atlanta Gas Light

BE Georgia Power

BT Bell South

L3 Level 3 Communications

MFN Metromedia Fiber Network

SAN Fulton County Public Works

W City of Atlanta

UNK Unknown Owner

Purpose:

- Resolves utility conflicts
- Organizational tool
- Damage prevention

Conflict Resolution

- Modify Roadway Design
- Modify Drainage Design
- Identify Utility Conflicts
- Additional SUE
- Utility Coordination

Conflict Resolution Task Summary

- Utility Coordination
- Modify Project Design
- Prepare Conflict matrix
 - Introduced after 2005
 - Used whenever QL-B SUE is provided
 - After QL-B and prior to FFPR (ideally before PFPR)
- Introduce Design Alternatives
- Identify Req'd. Utility Relocations
- Utility Relocation Plans complete
 - (Prior to FFPR)
- Final Utility plans to PM
- Three months prior to FFPR

Iterative Process (pending design progression)

Conflict Analysis

Alternative Design Strategies:

- Conflict structure
- Adjust drainage pipes/structures
- Pre-cast versus casting on-site
- Basic design modification
- Utility prioritization

Conflict Analysis

When Utilities Have to Move

- Lessen impact
- Joint trenches
- Utility Installation by Highway Contractor

3D Underground Imaging

Geophysical Imaging Technologies include:

- •14-channel 3D Ground Penetrating Radar system
- •Multi-Sensor Electromagnetic Induction (EMI) system

High-Accuracy Positioning Systems include:

- 10-cm differentially-corrected GPS (DGPS)
- Fully-automated Robotic surveying system

3D Underground Imaging

Shaping the Future

14-Channel3D Radar system

Multi-Sensor Electromagnetic Induction

3D Underground Imaging

3D Underground Imaging Compliments Conventional Subsurface Utility Engineering:

- Finds utilities conventional SUE (including single-channel GPR) might not
- Provides vertical information without test holes
- Achieves 100% geophysical investigation coverage
- Identifies non-utility subsurface features that may impact a project
- Can discern stacked and multi-conduit utilities

Case Study: Subsurface Mapping for Power Plant Expansion, NC

Case Study: Subsurface Mapping for Power Plant Expansion, NC

Tomorrow

Engineering Design Standard of Care

- Design Survey
- Geotechnical Investigation
- Subsurface Utility Engineering

Routinely used on public and private works projects

Shaping the Future

THANK YOU!

Contact:
Robert L.(Bob) Clemens
Cardno TBE
317.491.5716 (cell)
Bob.Clemens@CardnoTBE.com

